Field Application of Accelerated Mineral Carbonation
نویسندگان
چکیده
Globally, coal-fired power plants are the largest industrial source of carbon dioxide (CO2). CO2 emissions from flue gas have potential for direct mineralization with electrostatic precipitator fly ash particles in the field. Demonstration scale accelerated mineral carbonation (AMC) studies were conducted at the Jim Bridger Power Plant, a large coal fired power plant located in Wyoming, USA. AMC produces kinetically rapid conditions for increased rates of mineralization of CO2, sulfur dioxide (SO2) and mercury (Hg) on fly ash particles. Control and AMC reacted fly ash particles were investigated for: change in carbon (expressed as CaCO3), sulfur (expressed as SO4), and mercury (Hg) contents; topology and surface chemical composition by scanning electron microscope/energy dispersive X-ray spectroscopy analysis; chemical distribution of trace elements; and aqueous mineral solubility by the toxicity characteristic leaching procedure. Results of the AMC process show an increase in C, S, and Hg on AMC fly ash particles suggesting that multiple pollutants from flue gas can be removed through this direct mineral carbonation process. Results also suggest that the AMC process shifts soluble trace elements in fly ash to less leachable mineral fractions. The results of this study can provide insight into potential successful field implementation of AMC.
منابع مشابه
Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials
Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality co...
متن کاملInvestigations of the Mechanisms that Govern Carbon Dioxide Sequestration via Aqueous Olivine Mineral Carbonation
Coal, in particular, and fossil fuels, in general, are well positioned to supply the world’s energy needs for centuries to come if the environmental challenges associated with anthropogenic carbon dioxide emissions can be overcome. Carbon dioxide sequestration is being actively pursued as an option to reduce CO2 emissions, while still enjoying the advantages of low-cost fossil fuel energy. Mine...
متن کاملImpacts of Nickel Nanoparticles on Mineral Carbonation
This work presents experimental results regarding the use of pure nickel nanoparticles (NiNP) as a mineral carbonation additive. The aim was to confirm if the catalytic effect of NiNP, which has been reported to increase the dissolution of CO₂ and the dissociation of carbonic acid in water, is capable of accelerating mineral carbonation processes. The impacts of NiNP on the CO₂ mineralization b...
متن کاملEnvironmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology
This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2...
متن کاملGeological Sequestration of CO2: Mechanisms and Kinetics of CO2 Reactions in Mafic and Ultramafic Rock Formations
The main purpose of this exploratory project is to develop a more fundamental understanding of the long-term sequestration of CO2 via mineral carbonation reactions involving the common Mg-silicates in serpentinite and basalt mineral assemblages. Past experimental studies have shown that these reactions are kinetically limited, so we are exploring ways to enhance their kinetics, including the us...
متن کامل